Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure and optical properties of ZnO:V thin films with different doping concentrations

Identifieur interne : 000D27 ( Chine/Analysis ); précédent : 000D26; suivant : 000D28

Structure and optical properties of ZnO:V thin films with different doping concentrations

Auteurs : RBID : Pascal:09-0304766

Descripteurs français

English descriptors

Abstract

A series of ZnO thin films doped with various vanadium concentrations were prepared on glass substrates by direct current reactive magnetron sputtering. The results of the X-ray diffraction (XRD) show that the films with doping concentration less than 10 at.% have a wurtzite structure and grow mainly along the c-axis orientation. The residual stress, estimated by fitting the XRD diffraction peaks, increases with the doping concentration and the grain size also has been calculated from the XRD results, decreases with increasing the doping concentration. The surface morphology of the ZnO:V thin films was examined by SEM. The optical constants (refractive index and extinction coefficient) and the film thickness have been obtained by fitting the transmittance. The optical band gap changed from 3.12 eV to 3.60 eV as doping concentration increased from 1.8 at.% to 13 at.% mol. All the results have been discussed in relation with doping concentration.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0304766

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structure and optical properties of ZnO:V thin films with different doping concentrations</title>
<author>
<name>LIWEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Física, Instituto Superior de Engenharia do Porto, Rua Dr. Ant6nio Bernardino de Almeida 431</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>4200-072 Porto</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centro de Física, Universidade do Minho, Campus de Azurem</s1>
<s2>4800-058 Guimarães</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>4800-058 Guimarães</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University; Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>LIJIAN MENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Física, Instituto Superior de Engenharia do Porto, Rua Dr. Ant6nio Bernardino de Almeida 431</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>4200-072 Porto</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centro de Física, Universidade do Minho, Campus de Azurem</s1>
<s2>4800-058 Guimarães</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>4800-058 Guimarães</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Teixeira, Vasco" uniqKey="Teixeira V">Vasco Teixeira</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centro de Física, Universidade do Minho, Campus de Azurem</s1>
<s2>4800-058 Guimarães</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Portugal</country>
<wicri:noRegion>4800-058 Guimarães</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHIGENG SONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Thin Film Center, University of Paisley</s1>
<s2>Paisley PA1 2BE, Scotland</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Paisley PA1 2BE, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHENG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University; Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>XURONG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University; Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0304766</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0304766 INIST</idno>
<idno type="RBID">Pascal:09-0304766</idno>
<idno type="wicri:Area/Main/Corpus">005479</idno>
<idno type="wicri:Area/Main/Repository">004B26</idno>
<idno type="wicri:Area/Chine/Extraction">000D27</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic additions</term>
<term>Cathode sputtering</term>
<term>Doping</term>
<term>Extinction index</term>
<term>Grain size</term>
<term>Indium additions</term>
<term>Layer thickness</term>
<term>Optical constants</term>
<term>Optical properties</term>
<term>Photonic band gap</term>
<term>Physical vapor deposition</term>
<term>Quantity ratio</term>
<term>Reactive sputtering</term>
<term>Refractive index</term>
<term>Residual stresses</term>
<term>Scanning electron microscopy</term>
<term>Sputter deposition</term>
<term>Surface morphology</term>
<term>Thin films</term>
<term>Transmittance</term>
<term>Vanadium</term>
<term>Wurtzite structure</term>
<term>XRD</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optique</term>
<term>Couche mince</term>
<term>Dopage</term>
<term>Pulvérisation réactive</term>
<term>Dépôt physique phase vapeur</term>
<term>Dépôt pulvérisation</term>
<term>Pulvérisation cathodique</term>
<term>Diffraction RX</term>
<term>Structure wurtzite</term>
<term>Contrainte résiduelle</term>
<term>Grosseur grain</term>
<term>Effet concentration</term>
<term>Morphologie surface</term>
<term>Microscopie électronique balayage</term>
<term>Oxyde de zinc</term>
<term>Vanadium</term>
<term>Constante optique</term>
<term>Indice réfraction</term>
<term>Indice extinction</term>
<term>Epaisseur couche</term>
<term>Facteur transmission</term>
<term>Bande interdite photonique</term>
<term>Addition arsenic</term>
<term>Addition indium</term>
<term>ZnO</term>
<term>Substrat verre</term>
<term>7866</term>
<term>8115C</term>
<term>6860B</term>
<term>6855J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Vanadium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A series of ZnO thin films doped with various vanadium concentrations were prepared on glass substrates by direct current reactive magnetron sputtering. The results of the X-ray diffraction (XRD) show that the films with doping concentration less than 10 at.% have a wurtzite structure and grow mainly along the c-axis orientation. The residual stress, estimated by fitting the XRD diffraction peaks, increases with the doping concentration and the grain size also has been calculated from the XRD results, decreases with increasing the doping concentration. The surface morphology of the ZnO:V thin films was examined by SEM. The optical constants (refractive index and extinction coefficient) and the film thickness have been obtained by fitting the transmittance. The optical band gap changed from 3.12 eV to 3.60 eV as doping concentration increased from 1.8 at.% to 13 at.% mol. All the results have been discussed in relation with doping concentration.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>517</s2>
</fA05>
<fA06>
<s2>13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structure and optical properties of ZnO:V thin films with different doping concentrations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIWEI WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIJIAN MENG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TEIXEIRA (Vasco)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHIGENG SONG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHENG XU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XURONG XU</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Física, Instituto Superior de Engenharia do Porto, Rua Dr. Ant6nio Bernardino de Almeida 431</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centro de Física, Universidade do Minho, Campus de Azurem</s1>
<s2>4800-058 Guimarães</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University; Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Thin Film Center, University of Paisley</s1>
<s2>Paisley PA1 2BE, Scotland</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>3721-3725</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000188473020190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0304766</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A series of ZnO thin films doped with various vanadium concentrations were prepared on glass substrates by direct current reactive magnetron sputtering. The results of the X-ray diffraction (XRD) show that the films with doping concentration less than 10 at.% have a wurtzite structure and grow mainly along the c-axis orientation. The residual stress, estimated by fitting the XRD diffraction peaks, increases with the doping concentration and the grain size also has been calculated from the XRD results, decreases with increasing the doping concentration. The surface morphology of the ZnO:V thin films was examined by SEM. The optical constants (refractive index and extinction coefficient) and the film thickness have been obtained by fitting the transmittance. The optical band gap changed from 3.12 eV to 3.60 eV as doping concentration increased from 1.8 at.% to 13 at.% mol. All the results have been discussed in relation with doping concentration.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H60B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Pulvérisation réactive</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Reactive sputtering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>XRD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Structure wurtzite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Wurtzite structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estructura wurtzita</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Contrainte résiduelle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Residual stresses</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Vanadium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Vanadium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Constante optique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Optical constants</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Indice extinction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Extinction index</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Bande interdite photonique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Photonic band gap</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Addition arsenic</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Arsenic additions</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6860B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>222</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000D27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0304766
   |texte=   Structure and optical properties of ZnO:V thin films with different doping concentrations
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024